

UNCLASSIFIED

ECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0

1

a REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb RESTRICTIVE MARKINGS

a SECURITY CLASSIFICATION AUTHORITY

b. DECLASSIFICATION /DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution
is unlimited.

PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

a NAME OF PERFORMING ORGANIZATION

Naval Postgraduate School

6b OFFICE SYMBOL
(If applicable)

3A

7a NAME OF MONITORING ORGANIZATION

c. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000

7b ADDRESS (City. State, and ZIP Code)

a NAME OF FUNDING /SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK
ELEMENT NO NO NO

WORK UNIT
ACCESSION NO

1 TITLE (Include Security Classification)

)istributed Processing on Link Enhancement

2 PERSONAL AUTHOR(S)

Ju, Tsung-Li
3a TYPE OF REPORT

tester's Thesis
13b TIME COVERED
FROM TO

14 DATE OF REPORT (Year, Month. Day)

1992, September

5 PAGE COUNT

69

6 SUPPLEMENTARY NOTATION

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

CRCS, 0/1-knapsack, UNIX, RPC, Distributed Computing
System, Sun Workstation

t
Distributed Processing.

9 ABSTRACT (Continue on reverse if necessary and identify by block number)

Link enhancement is a classical optimization problem where a military network
manager wishes to enhance his network's survivability and routability with a
given budget and faces with a multitude of potential architectural configurations
from which to choose. This problem is NP-complete and good heuristics do exist.
However, heuristics are still computational intensive. Distributed processing
of the problem uses multiple workstations to cooperatively solve the problem such
that the network manager can make his decision faster than running the algorithms
on a single computer. This thesis reports the experiences of using distributed
computation and its benefit.

DISTRIBUTION /AVAILABILITY OF ABSTRACT

CS UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION

Unclassified
2a NAME OF RESPONSl

ang, Chyan
ILE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

I
EC/Ya(408)6462081

} Form 1473. JUN 86 Previous editions are obsolete

S/N 0102-LF-014-6603

SECURITY CLASSIFICATION OF THIS PAGE

Unclassified

T2601%

Approved for public release; distribution is unlimited.

Distributed Processing on

Link Enhancement

by

Wu, Tsung-li

Captain, Taiwan R.O.C. Army

B.S., Chung Cheng Institute of Technology, Taiwan R.O.C.

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

ABSTRACT

Link enhancement is a classical optimization problem where a military

network manager wishes to enhance his network's survivability and routability with

a given budget and faces with a multitude of potential architectural configurations

from which to choose. This problem is NP-complete and good heuristics do exist.

However, heuristics are still computational intensive. Distributed processing of the

problem uses multiple workstations to cooperatively solve the problem such that

the network manager can make his decision faster than running the algorithms on

a single computer. This thesis reports the experiences of using distributed

computation and its benefit.

uJ/.

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. GOALS AND OBJECTIVES 3

C. THESIS OUTLINE 3

II. LINEAR SEARCH AND CRCS ALGORITHMS 5

A. LINEAR SEARCH ALGORITHMS 5

1

.

One Way Linear Search Algorithms 6

2. Two Way and Three Way Linear Search Algorithms 8

3. BGH - Beat Group of Heuristic 8

B. IMPROVEMENT BY CONSTRAINED RANGE AND

REDUCED CANDIDATE SET 9

1. Constrained Range and Squeezing The Constrained Range 10

2. Reduced Candidate Set 11

3. Examples 12

III. DISTRIBUTED APPROACH 15

A. EXPERIMENT METHODS 16

B. ANALYSIS OF RESULTS 22

IV

1

.

Example of 30 Links 22

2. Example of 31 Links 27

IV. CONCLUSION 31

APPENDIX A PROGRAM OF THE HOST PROCESS 32

APPENDIX B PROGRAM OF THE REMOTE PROCESS 51

LIST OF REFERENCES 60

INITIAL DISTRIBUTION LIST 62

ACKNOWLEDGMENT

I am grateful to my advisor: Prof. Yang, Chyan, who suggested me this topic and

gave me so much guidance as I prepared my thesis.I am deeply indebted to my second

reader, Prof. David Alan Schrady, who offered many valuable advice and suggestions as

he reviewed my thesis. My thanks go to the chairman of Electronic Warfare Academic

Group for his assistance and worthy opinion — Prof. Jeffrey B. Knorr. Finally, I thank my

wife Pai, Shu-hui for patiently proofreading my thesis.

VI

I. INTRODUCTION

A. BACKGROUND

Network survivability has been studied mainly for the purpose of establishing

fault-tolerant networks. Many researchers have studied the subject based on

concepts in graph theory that relate to either spanning trees [Ref.l, 2] or cutsets

[Ref.3]. To achieve the balance between affordability and survivability,

parameterized by the number of circuits required, a linear programming model is

also used to minimize total cost for a communication system [Ref.4]. The specific

problem of each research may be different and the corresponding optimal solution

to that problem can be proven intractable. Realizing the difficulty of the problems,

several researchers have proposed heuristic approaches for solving network

survivability problems [Ref.5, 6, 7].

It is common that an existing military network consists of many nodes, will

contain some nodes that are directly connected with communication links while

some of them have to communicate indirectly through intermediate nodes.

Sometimes it is desirable to add communication links between nodes of a

communication network enhancing the network routability and survivability [Ref.l,

2]. For an existing military network it is important and interesting to ask the

question: what is the optimal link enhancement for a given investment? Our

purpose is to maintain a maximum communication network survivability and the

performance requirement.

Suppose we have a table for all pairs of nodes which are not yet connected.

For each pair of the nodes (i, j) we have the information about the costs (c^) of

establishing a link between them. In addition, we know the value p^ for the

performance contribution when the link between the pair of nodes (i, j) is

established. In the following discussions, the p^ is called as profit that may simplify

the usage of subscripts (since both "cost" and "contribution" start with "c"). The

value Py can be thought of as the contribution of the link connecting node i and j,

either in routability or survivability measures [Ref.l, 2]. Now,the question can be

stated as follows. Given an investment or budget in dollar amount, B, what is the

best strategy of networking link enhancement such that the overall network will

have optimal routability and survivability? Managerial considerations usually give

a maximum budget figure so that practically we are solving the link enhancement

problem with maximum costs.

The link enhancement problem is NP-complete [Ref.7]. Generally speaking,

we should find an algorithm that provides near-optimal solution and takes

nonexponential time to compute [Ref.4]. In the CRCS (constrained range and

reduced candidate set) algorithm [Ref.9], the most important computation is the

combinatorial part. To reduce the long running time it takes, the combinations are

separated and distributed to four workstations instead of running it on a single

machine. Taking advantage of the technology of Local Area Networks (LANS), this

computation can be improved by computer networking and distributed computing.

In the following discussions we assume that each link selection is independent

of the others except the total budget B gets reduced. This is a reasonable

assumption since usually we select only a small set (from 1 to 6) of links and the

assumption will simplify the algorithm to be presented. In reality, after each link

selection, we have to update the p^ for the entire network before the next selection

takes place. However, the computation of p^ is beyond the scope of this thesis and

its computation time should not affect our results.

B. GOALS AND OBJECTIVES

The primary goal of this thesis is to find methods that provide near-optimal

solution and take less computing time for the NP-complete link enhancement

problem.

C. THESIS OUTLINE

The linear search and CRCS algorithms are discussed in Chapter II. Some

techniques and two examples are presented clearly. Chapter III described the

methods used to apply to the previous algorithms to reduce the computing time.

Issues and techniques in using multiple workstations are also discussed. The two

programs of the host and remote process for distributed approach are in appendices

A and B respectively. Chapter IV summarizes conclusions based on this study.

n. LINEAR SEARCH AND CRCS ALGORITHMS

A computer network can be thought of as a graph G(V,E), where V represents

the vertices (nodes) and E represents the edges (links) [Ref.5]. Suppose we have

a table consisting of tuples of the form (i, j, c
y , p^) where i and j are the node

numbers in the network and c^ is the cost to establish the link between nodes i and

node j, the value p ;j
is the contribution of this link enhancement. We are trying to

find a solution for a given investment B such that Xcy < B and Spy is maximized.

We can describe a generic linear search algorithm with the following steps. As we

have mentioned above, step 3 will not be included in subsequent discussions.

1

.

select (remove) a link from the set of candidate links; add this link to the current

network.

2. B = B - Cy ;

3. update the network profile, i.e., compute p^ for the links of the new network

4. stop if B < Cy for all links

5. go to step 1.

A. LINEAR SEARCH ALGORITHMS

Linear search algorithms have been reported and detailed examples can be

found in [Ref.7]. Its basic idea is to search the sorted table of the set of candidate

links until the budget is exhausted. Depending on the keys used to address the

sorted table there are several variants of linear search. A brief overview is given

in this section.

1. One Way Linear Search Algorithms

There are three variations of the one-way linear search algorithm and

they differ at step 1 in the ways they select a communication link. We first sort the

table in nondecreasing order on the value of c% and extract the tuples with value of

Cj: < B to form a feasible solution set named FS. Traditional optimal solution for

the knapsack problem can be done by adding a field of r^ = py / c^ to each tuple

and sort the list in nonincreasing order of r^. We name this new list FS
r
that

consists of tuples of (i, j, c
y , p^, i»). Without loss of generality, we can assign one

link number to each node pair (i, j) to be considered, i.e., Table 1 shows only the

link numbers instead of node pairs. Thus, in subsequent discussion the list FS
r

consists of tuples of (k, q, Pk, rk) with k as the link number. Note that the value

of rk effectively measures the contribution per dollar amount. The solution is simply

a selection of links from the linear search of the list FS
r
until B is exhausted or

becomes insufficient. If divisibility is allowed this linear search algorithm, based

on rk ,
gives the optimal solution [4] for knapsack problems. However, this solution

will not give the optimal solution in 0/1 -knapsack or link enhancement problems.

Table 1 : EXAMPLE OF 20 LINKS TO BE CONSIDERED AND THE

CORRESPONDING PROFIT

Link number Cost Profit

1 1833 4140
2 1754 3506
3 1246 3819
4 1529 2310
5 2034 3370
6 2568 5276
7 1508 3859
8 1608 4477
9 1691 3269

10 2112 3807
11 1840 3661
12 1960 3560
13 2184 4440
14 2549 2899
15 2254 3643
16 2289 4224
17 1883 4368
18 1682 1922
19 1711 3844
20 1578 3484

From FS we can create two sorted lists FS C and FSp
. FSC is sorted by ck

in nondecreasing order while FS
p
is sorted by pk in nonincreasing order. Similar to

the linear search we have just described above we can perform a linear search of

list FSC and select links one at a time until the budget is exhausted or becomes

insufficient. Likewise, we can do a linear search of list FS
p
and obtain the

selections. Since all three one-way linear search methods, based on FS
r , FSc,or FSp ,

are not optimal we can always construct examples that defeat them easily.

2. Two Way and Three Way Linear Search Algorithms

Instead of one-way search methods described above we may make

decisions by observing the two lists joindy. For example, we may use FS
r
and FS

C

together to obtain the selections. We start the linear search separately on these two

lists one link at a time. We use the voting scheme to select the link. Whenever we

encounter a link such that the link has been visited in FS
r
or FS C the counter

associate with the link is increased. When any counter reaches a preset threshold

value, e.g. 2, this link is added to the network. The value B is updated by

subtracting q of the candidate link. We continue the linear search until B is either

exhausted or becomes insufficient. This counting method is called a voting

algorithm since each link accumulates the votes from different lists until it gets

enough votes. The preset threshold in a two-way linear search is set to 2 since each

link can get a maximum vote of 2. If the threshold is set to 1 , it reduces to a one-

way search.

3. BGH - Beat Group of Heuristic

All the heuristic algorithms discussed above are greedy in nature, in that

each sorts the FS in a certain order and allocates the available budget accordingly.

Since sorting can be done in O(nlogn) time we can achieve our solution in

X

O(nlogn) time. However, from our study none of them consistently outperforms the

others. It is natural to select the best among them, i.e., we can find seven sets of

solutions and pick the best one of them. By doing this we select the best solution

from a group of heuristic algorithms and we name it BGH. The idea of BGH has

been used in Tirumalai and Butler [Ref.8] to select the best of 3 available heuristic

algorithms for multiple-valued logic minimization. Unfortunately, even with 6

heuristic algorithms to choose from, the BGH cannot guarantee the optimal solution

[Ref.7].

B. IMPROVEMENT BY CONSTRAINED RANGE AND REDUCED

CANDIDATE SET

Two major improvements can be done over the linear search algorithms

explained above: constrained range (CR) and reduced candidate set (RCS) [Ref.9].

The CR method is to constrain the solution search space in a feasible range which

is determined by the available budget and the given costs of links. To constrain the

range the method does not compromise the optimality; the method simply tightens

the feasible space. The RCS method, however, does compromise in trading

computation time for possibility of losing optimality. The combined method of CR

and RCS is named CRCS.

1. Constrained Range and Squeezing The Constrained Range

Given a budget B, and costs of candidate links, q, we may find the

optimum solution within a constrained range hence saving computational costs. Let

Cmin and Cmax be the minimum and the maximum c
t
respectively. Notice that with

the given B we can readily compute the constraints: the upper limit, UL =

[B / Cmin_|, and the lower limit LL defined as

LL = fB/CmJifFSc(n-j)<r

LL = LB / CmJ if FSc(n-j) > r

where r = B - I"ten+1 FSc(i) and j = LB / CmJ.

LL indicates the number of links we can increase when all the budget

is used for the links that each requires Cmax . In a practical sense, this is the

minimum number of links we can add. The ceiling in the LL expression represents

the possibility that the leftover of B / Cmax may be sufficient for yet another link.

If this possibility is void, the floor option is chosen for conservative computation.

UL, however, represents the number of links that we can increase when all of the

budget is used for the links that each requires Cmin . UL is the maximum number of

links we can add. The floor in the UL expression represents the impossibility that

the leftover of B / Cmin can be used for any other link since no link costs less than

Cmin . The LL and UL give us the range that the optimum solution should lie:

10

[LL, UL] instead of [0, n]. In other words, the number of links we can add with

the given budget is the constrained range [LL, UL]. In practice, once we obtain the

solution from linear algorithms we can squeeze this constrained range further and

greatly reduce the computation time.

With the solutions of linear search algorithms we can squeeze the

constrained range for both RCS and exact optimal solution. The maximum number

k that satisfies Xk

i=1
FS

p
(i) < P

linear
may squeeze the LL further: LL=max(LL, k+1).

In other words, if the best k choices of FS
p
(i) cannot beat a similar scenario, the

maximum number k that satisfies Xk

i=1
FS c

(i) <= B may squeeze the UL further;

UL=min(UL, k). In other words, if the best k choices of FS
c
(i) is very close to B

such that no more links can be added then we are sure that UL must be no greater

than k.

2. Reduced Candidate Set

The philosophy behind the RCS is that if a link should be in the optimal

solution set this link must have a high probability to be selected by one of the

linear search algorithms. In other words, if we want to improve the result from the

linear search algorithm all we need is to examine only those links that have been

selected by linear search. This method, the RCS, rejects links that may or may not

be in the optimal solution set therefore it may not reach the optimal solution.

11

Hopefully, the gain in this heuristic is justified by both shorter computation time

and higher probability of reaching optimality.

3. Examples

Example 1 :

In Table 1 and 2, the Cmin = 1246 and B = 7000 while Cmax = 2568.

Using the definitions above, j = [7000 / 2568] = 2 and r = 7000 - 5117 = 1883,

r < FSc(n-j) = FSC(18) = 2289 hence LL=2 and UL=5. The constrained search range

is [2,5]. Considering all possible combinations we need to try C(20,2) + C(20,3)

+ C(20,4) + C(20,5) = 21,679 choices. Since 220 = 1,048,576 and with constrained

range in [2,5] we need only 21,679 / 1,048,576 = 2.06% of original exhaustive

computation time. This is a tremendous savings! A further squeeze can reduce both

LL and UL to 4 therefore only C(20,4) = 4,845 iterations or 0.46% of the original

computation time is needed. Note again the methods used to constrain the search

range and to squeeze the range do not compromise the optimality.

Example 2 :

RCS^S-^uSpUSeUS^uS^u^uS^SpeUS^uS^uS^uS^uS^uS^

uSprc ={1,3, 4, 6, 7, 8, 13, 17, 19, 20}. The reduced candidate set has 10 links to

be considered as opposed to the original n=20. Let's consider the case without

squeezing methods first. Instead of 21,679 choices in Example 1 above we now

have only C(10,2) + C(10,3) + C(10,4) + C(10,5) = 627 choices. The RCS

12

improved over the pure constrained range method by performing only 627 / 21,679

= 2.9% of the former computation. Comparing this to the brute force purely

exhaustive optimum solution, the combined CRCS takes only 627 / 1,048,576 =

0.06% of the former computation. Considering the squeezing methods we can limit

the computation within C(10,4) iterations to find the optimal solution. When both

the optimal solution and the CRCS use the squeezing methods the CRCS method

uses only C(10,4) / C(20,4) = 210 / 4845 = 4.33% computation time of that used

by the optimal solution method. CRCS finds the best solution set of {3, 6, 7, 8}

without the exhaustive search since these 4 links are in the reduced candidate set.

Table 2: FS, FS
p
, FSr

Link ID FS
C

Link ID FS
P

Link ID FS
r

3 1246 6 5276 3 3065
7 1508 8 4477 8 2784
4 1529 13 4440 7 2559

20 1578 17 4368 17 2320
8 1608 16 4224 1 2259

18 1682 1 4140 19 2247
9 1691 7 3859 20 2208

19 1711 19 3844 6 2055
2 1754 3 3819 13 2033
1 1833 10 3807 2 1999

11 1840 11 3661 11 1990
17 1883 15 3643 9 1933
12 1960 12 3560 16 1845
5 2034 2 3506 12 1816

10 2112 20 3484 10 1803
13 2184 5 3370 5 1657

13

Table 2, Cont'd
15 2254 9 3269 15 1616
16 2289 14 2899 4 1511
14 2549 4 2310 18 1143
6 2568 18 1922 14 1137

14

III. DISTRIBUTED APPROACH

In a distributed system, processing activities may be located in more than one

computer and the computers communicate over a network. The Host creates several

processes to perform work concurrently. When a remote procedure is invoked, the

caller is suspended, a message containing the arguments is constructed and passed

to the remote machine, and the procedure is executed there. In the UNIX

environment, however, a user can explicitly proceed the processes without

blocking. This will be shown later in the algorithm flowchart. Workstation users

can share information and other resources available in the network. File servers are

computers running software to enable workstation users to share information. The

Remote Procedure Calls (RPC) is the primary communication mechanism for

distributed programs. It allows for accessing remote services and also for passing

of parameters from the client to the server. The RPC command remote shell (rsh)

in the host computer also uses the original login name in the remote computer. The

command line entered as a parameter is sent to the server, at which time rsh

connects the UNIX standard input and output channels stdin ,stdout and stderr of

the newly initiated command with the process running locally by means of two

Transmission Control Protocol (TCP) connections [Ref.ll].

15

The system we use in this experiment consists of four Sun workstations

(SPARC station IPX, 28.5 MIPS) and one file server. Each workstation has a 32-bit

microprocessor with 16 Mbytes of RAM (see Figure 1). Sun's Network File

System (NFS) is an extension of the UNIX operating system which provides a

distributed file service base on network UNIX systems.

>, *

Ho

File
Server

*

An argument
"Process" is x

identify the

machines whic
called by the

ised to

remote

;h are
3 host.

PrinteShare
Files:

r

Parameter v
Originals
Samples
Joblists 1

St
1 1

-mm
I l

\\
c "1

I

1 1 1

/?
:

Remote
Workstations

—i rr (Sun SPARC
rr,Y,Y,Y,V,Y,Y,l lY,,Y,Y,Y,Y,Y,Y,l |

-!
Process=2 Process=3 Process=4 IPX)

Figure 1 The Distributed System.

A. EXPERIMENT METHODS

Workload balancing is very important to minimize the idle time of each

processor and running time of each case. Let N is the number of links, when N is

16

an even number, the peak of combination C(N, K) occurs at C(N, N/2) and it

decays symmetrically. The smallest is C(N, N) or 1. When N is an odd number,

the two largest workloads are C(N, (N-l)/2) and C(N, (N+l)/2), and it decays

symmetrically from these two values [Ref.10] (see Figure 2 and Figure 3). The

algorithm is outlined below.

IF N is an even number

THEN order[0]=N/2; /* the largest job */

jl=j2=l; /* = C(N,N/2) */

FOR (j=l; j<N-l ;j++) {

IF (j+2) is an odd number{

THEN order[j]=(N/2)-jl; jl++;

ELSE order[j]=(N/2)+j2; J2++; }

}

order[N-l]=N; /* C(N,N)=1 is the smallest one */

ELSE

order[0]=(N-l)/2;

order[l]=(N+l)/2; jl=j2=l;

FOR(j=2; j<N-l;j++) {

IF j is an even number {

THEN order[j]=order[0]-jl;jl++;

17

ELSE order[j]=order[l]+j2;j2++;

order[N-l]=N;

i AJA.
1 N-2 N N*2 N+N-2

t 2 * 2

Figure 2 General Workload
Distribution When N is
an Even Number

.

C(K.x)

4^

i »-s mo w-i «! »! ins mit-a n

a a a 2 2 2

/LsL> x

Figure 3 General Workload
Distribution When N is
an Odd Number.

18

A job-list is built for the four workstations from C(LN, Nmin) to C(LN, Nmax),

and is sorted by the value of C(LN, k), where LN is the number of RCS and k is

in [Nmin , NmaJ. The host does the largest job and the others are assigned in a

wraparound order. For example, the fifth one is assigned to the 4th machine while

the 8th one is assigned to the host. The rule of job-assignment (see Table 3) and

an algorithm for a remote process is shown below. This assignment cannot

guarantee the exactly balanced distribution but it is an easy implementation that

approximates workload balancing. A remote processor is invoked by the remote

shell command in the host program. In the meantime, the RCS, parameters which

are necessary for computing and job-list are stored in shared files.

j=2;

FOR (a=l; a<=100; a++) /* a<= some big number */

IF j <= (Nmax-Nmin+1)

THEN IF LN >= job[j] /* The order of assignment*/

THEN comb(LN,job[j]);

IF (a+2) is an odd number

THEN j=j+5;

ELSEj=j+3;

ELSE break:

19

When the remote machines are invoked by rsh, an argument "process" will

be passed from host via system command to identify the i.d. of the different

processes, and an output file is created for each process respectively. The remote

process executes a program named "share" to find the best solution. Each

workstation writes its results to a separate output file (see Figure 1). When the host

has handed over the assignment to remote machines, it continues its own job(see

Figure 4).

Table 3: JOB ASSIGNMENT FOR THESE FOUR WORKSTATIONS.

Machine i.d. Machine name Jobs

The host SUN 3 *1 8 9 16
Remote -1 SUN10 2 7 10 15
Remote -2 SUN 2 3 6 11 14
Remote -3 SUN17 4 5 12 13

* The 1 means the largest combination job.

To synchronize the completion of these concurrent processes, an integer

semaphore [Ref.12] is saved to a file and is used as a signal. This integer, a

counting semaphore, is initialized to 0. The semaphore is incremented when a

new remote processor is called and is decremented when the remote process

20

Sun3 ! The Host

Start ")

V
V
V

Pack Arguments
and Send Request
Message

SunlO

"rsh
sunlO share 2k"

r

Suspend !

share 2

"

Return

I
<h

Receive and
Unpack
Arguments

"rsh
sun2 share 3 &'

v

Suspend

o-
Execute
The Host
Process

Execute
Remote -1
Process

Sun2

P> "share 3"

Return . ^IRemote-2
-<C] 1

Process

i
Dataf ile-1

Dataf ile-2

Datafile-3

f Stop j

f Stop

^

Stop

Figure 4 The Flow of Link Enhancement Algorithm of a
Three-combination Case.

21

finishes. The UNIX command "time" is used to measure the user time, system time

and real time of the host and the remote process [Ref.13].

B. ANALYSIS OF RESULTS

There are 62 out of the original 180 cases (n=30) tested in [Ref.9,14], and 65

out of the other 180 cases (n=31) which need more than one combination. These

127 (62+65) cases are tested in both distributed and non-distributed approaches in

this thesis. When n=30, there are 38 two-combination cases, 22 three-combination

cases, and 2 four-combination cases. The remaining 118 cases need 1 combination

respectively. In the case of n=31, there are 40 two-combination cases, 19 three-

combination cases, and 6 four-combination cases. The remaining 115 cases need

1 combination respectively.

This experiment is tested in a single user environment. We use the computer

time (sum of user time and system time) instead of wall-clock time as the measure

of comparison. For the distributed approach, each case is done when the host

detects the completion of all remote machines.

1. Example of 30 Links

The average time (computer time) of distributed and non-distributed

approaches for these 38 2-combination cases are 513.56 and 870.25 seconds

respectively. The former one saves 41% of the time of the latter's, and about 46%

22

in some extreme cases (cases 8, 13, 18 and 23). For those 22 3-combination cases,

the average times for the distributed and non-distributed approaches are 1058.5 and

2377.3 seconds respectively . We save about 55.5% of the time by the distributed

approach and 60.6% in the extreme case (case 83). We need 4 machines for the

142nd case. Because the computing of this case is too simple, the distributed

approach takes a longer time than the non-distributed approach (see Table 4 and

the reason will be explained later). In the 127th case, the RCS={1, 3, 5, 6, 7, 10,

11, 12, 13, 15, 16, 17, 18, 19, 20, 23, 25, 26, 27, 28, 30}, it takes 40 seconds by

distributed approach or 12.8 seconds by the non-distributed approach to find the

solution set {3, 20, 23, 25, 26, 27, 28, 30} and contribution of 48759 profit

selected from RCS. To find the optimal solution, we use the entire set of links as

the sample space instead of RCS. It takes 4586.3 seconds to reach the best solution

set {3, 23, 24, 25, 26, 27, 28, 30} and contribution of 48784 profit by the non-

distributed approach. However, it takes only 2478.7 seconds to reach the same

results by the distributed approach. Thus we save 45.9% ((4586.3 - 2478.7) /

4586.3 = 45.9%) of the time in the 127th case. Tables 5,6 and 7 summarize the

results of 30 links discussed above.

23

Table 4: THE COMPUTER TIMES (IN SECONDS) OF THE HOST PROCESS
FOR DISTRIBUTED AND NON-DISTRIBUTED APPROACH (n=30).

Case Distributed Non-distributed

7 4.5 1.6
8 766.6 1423.5

12 6.0 1.9
13 767.8 1423.4
17 7.2 1.8
18 769.2 1423.8
22 8.6 2.1
23 770.2 1424.0
37 13.0 4.0
38 1478.7 2680.5
39 188.1 242.5
42 14.3 4.0
43 1478.6 2663.1
44 190.5 242.6
47 15.2 .9
48 1480.1 2685.3
49 190.4 242.8
52 16.3 .0

53 1481.6 2661.9
54 191.8 242.7
67 20.7 4.2
68 2762.2 4845.2

* 69 195.9 274.7
72 22.0 4.2
73 2760.8 4844.8

* 74 197.5 258.1
* 77 22.6 3.7
* 78 3157.6 7981.7
* 79 198.6 263.1
* 82 26.4 9.4
* 83 3172.2 8054.3
* 84 199.9 263.3

97 32.1 10.9
98 2120.4 3496.0
99 91.2 86.1

102 32.6 11.3
* 103 2769.4 6241.7

104 92.5 86.6

24

Table 4 (Cont'd)
106 29.3
107 31.3

* 108 2767.8
* 109 205.9

111 30.1
* 112 31.2
* 113 2769.6
* 114 206.5

126 34.3
127 40.0
128 1432.4
129 53.9
131 35.3

* 132 38.6
* 133 2135.2

134 55.3
* 136 36.8
+ 137 42.1
* 138 2131.6
* 139 101.9
* 141 39.3

142 43.8
* 143 2779.7
* 144 103.5

2.7
6.5

6241.6
260.6

3.0
5.5

6264.6
263.6
.2

12.8
2216.0

27.7
.3
10.0

4313.4
27.7
3.3

15.2
4340.8

90.8
.6

15.1
7061.1

91.5

* Cases which have 3 combinations.
+ Cases which have 4 combinations.

Average

:

l.For "2 -combination" cases
-- 513.56 seconds for distributed approach,
-- 870.25 seconds for non-distributed

approach.
2. For "3 -combination" cases

-- 1058.5 seconds for distributed approach,
-- 2377.3 seconds for non-distributed

approach

.

25

Table 5: DATA OF THE 127th CASE WHEN n=30.

Link number Cost Profit

1 1124 2969
2 2062 3568
3 398 3100
4 1183 2858
5 569 3696
6 1170 2907
7 739 2544
8 2377 3219
9 423 2947

10 1266 4024
11 1163 2921
12 1254 4025
13 496 3577
14 1090 2606
15 813 3919
16 913 3969
17 554 3675
18 1701 3877
19 877 2518
20 968 2533
21 1106 2623
22 1180 2871
23 422 2951
24 1027 2558
25 397 3204
26 396 3134
27 762 3887
28 623 2614
29 2023 3609
30 409 3009

26

Table 6: BEST SELECTION OF THE 127th CASE

Linear Optimal

Solution set 30 28 27 26 25 23 20 30 28 27 26 25 24
3 23 3

Contribution 48759 48784

Table 7: THE COMPUTER TIMES (IN SECONDS) OF THE 127th CASE FOR
LINEAR AND OPTIMAL SOLUTIONS, USING 2 MACHINES(n=30).

Linear Optimal

Distributed 40.0 2478.7

Non-distributed 12.8 4586.3

2. Example of 31 Links

Table 8 shows that the average computation times required for n=31

cases are longer than the n=30 cases (see Table 4).When n=31 the average times

of distributed and non-distributed approaches for those 40 two-combination cases

are 698.64 and 1137.9 seconds respectively. The former one saves 38.6% of the

time of the latter' s and it is about 48.3% in one extreme case (case 53) . For those

19 three-combination cases, the average times of the distributed and non-distributed

27

approach are 2612.3 and 5854.5 seconds respectively . We save about 55.4% of the

time by the distributed approach and 58.8% in the extreme case (case 68). For

those 6 four-combination cases, the average times of the distributed and non-

distributed approach are 474.83 and 932.3 seconds respectively . We save about

49% of the time by the distributed approach and 54.8% in the extreme case (case

143, see Table 8).

Generally, the distributed approach requires overhead in the file accessing,

system calls, additional works for workload analysis, job assignment, etc. When

computations are intensive, the overhead of the distributed processing, relative to

effective computations, is reduced drastically.

Table 8: THE COMPUTER TIMES (IN SECONDS) OF THE HOST PROCESS
FOR DISTRIBUTED AND NON-DISTRIBUTED APPROACH (n=31).

Case Distributed Non-distributed

37 14.7 .0
42 15.9 6.9
44 615.7 853.9
45 14.1 2.2
46 14.6 1.8
47 17.1 7.0
48 6499.6 12529.7
49 617.0 853.4
50 15.5 2.1
51 15.5 1.9
52 18.5 7.2
53 6487.4 12540.8

28

Table 8 (Cont'd)
54 617.9
55 16.6
63 5618.3
67 22.1

* 68 6073.1
69 268.1
72 23.4

* 73 6077.7
74 269.3
77 24.8

* 78 6078.4
79 270.9
80 22.9

* 82 28.7
* 83 6083.3

84 271.8
85 24.5
93 3632.0
97 72.3

* 98 5013.8
99 114.5

* 102 39.9
* 103 5042.9
* 104 277.6

105 29.7
106 29.7
107 41.3

* 108 5017.9
109 278.4
111 30.6

+ 112 42.7
* 113 5059.3
* 114 279.3

122 49.9
123 848.8
126 35.2
127 72.6

* 128 1435.6
129 60.7
131 36.4
132 45.4

* 133 1437.9
* 134 124.3

135 37.6
* 136 38.0

853
2

8597
6

14743
337.8

6.9
14712.3

337.8
7.1

14688.6
338.0

2.5
18.1

14657.2
338.0

2.7
5900.1

85.9
10899.2

115.6
29.0

10897.2
364.0

3.2
3.2

40.0
10915.2

364.2
2.9

40.1
10897.3

364.3
29.1

1227.6
3.3

68.3
2632.9

35.2
3.3

22.2
2633.0
122.4

3.7
3.5

29

Table 8 (Cont'd)
* 137 46.8
* 138 1440.0
+ 139 287.7

140 38.6
* 141 39.1
+ 142 50.6
+ 143 2138.6
+ 144 288.1

22.5
2631.2
370.5

3.9
3.7

33.1
4729.0
381.1

* Cases which have 3 combinations.
+ Cases which have 4 combinations.

Average

:

l.For "2 -combination" cases
-- 698.64 seconds for distributed approach,
-- 1137.9 seconds for non-distributed

approach

.

2. For "3 -combination" cases
-- 2612.3 seconds for distributed approach,
-- 5854.5 seconds for non-distributed

approach

.

3. For "4 -combination" cases
-- 474.8 seconds for distributed approach.
-- 932.3 seconds for non-distributed

approach

.

30

IV. CONCLUSION

The distributed processing can reduce the computer time to finish the

computation of link enhancement problems. A decision maker reaches the solution

sooner than if the problem is solved in a single machine, especially when the

computation is complicated. In complex cases, the more workstations the better.

Optimality of the link enhancement problem may be reached by using the entire

set of links as the sample space instead of using the RCS set. The combinations

required for optimal solution will be in range [C(n,Nmin) , C(n,NmaJ] instead of

in [C(LN,Nmin) , C(LN,Nm„)] and it will take longer time than using RCS. In this

case, the distributed processing becomes necessary.

31

APPENDIX A PROGRAM OF THE HOST PROCESS

Program of The Host Process

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <signal.h>

#define MAXtry 101

#define MAXdim 200

#define MAXNUM 2147483647.00

#define max(a,b) (a>=b)?a:b

#define min(a,b) (a<=b)?a:b

float Ul [MAXdim], U2[MAXdim];
int Rawcost[MAXdim], Rawprofit[MAXdim], Rawratio[MAXdim]

int skip, Idskip, Jdskip, Kdskip,counter=0;

int stop, Idstop, Jdstop, Kdstop;

int n, B, Cmin, Cmax, LN,process,SIGNAL;

long int Plinear;

long now;

char *time_ptr;

int Uc, Up, Vc, Vp;

int out[MAXtry], sample[MAXtry];

struct Original {

int index;

int cost;

int profit;

int ratio;

} TABLE[MAXtry]
struct Sorted_vector {

int value;

int index;

32

struct solution {

int CostUsed;

int Contribution;

int id;

} FSopt;

struct solution FS3[7], FS2[7], FS1[4];

struct Sorted_vector Sort[4][MAXtry];

int order[MAXtry];

int job[MAXtry];

int Vote[MAXtry], Candidate[MAXtry];

int ctr, SolOpt[MAXtry], SolCurrent[MAXtry],

SolFS3[7][MAXtry], SolFS2[7] [MAXtry], SolFSl [4] [MAXtry];

int currentPi, tmpCi, tmpPi;

charFSstringl[4][2] = {" ", V, "p", "c"};

char FSstring2[7][3] = {" ", "rp", "re", "pr", "pc", "cr", "cp"};

char FSstring3[7][4] = {" ", "rpc", "rep", "pre", "per", "crp", "cpr"};

char Filename[4][11] = {" ", "tmpSortedR","tmpsortedP", "trnpSortedC

FILE *fraw,*fraw2,*fpara,*fFLAG;

int Id, Jd, Kd;

main(argc, argv)

int argc;

float t, x, y, theta;

char command[40];

int NminPrime, NmaxPrime, Ntmp,N,ptr;

int sumPi, sumCi, Nmin, Nmax, i, j, k, I, J, K;

FILE *fin, *fid,*fsamp;

Uc=1000;

Up=3000;

system("rm -f parameter*");

system("rm -f sample* ");

33

system("rm -f joblist* ");

system("rm -f tmpSortedC ");

system("rm -f tmpSortedP ");

system("rm -f tmpSortedR");

system("rm -f original* ");

system("rm -f core");

system("rm -f try ");

printffBEGIN !");

/* input file format

Line 1 to n: index, cost, profit, ratio

execution example: distLN 31 try 80 (skip 80 iterations for n=31, try is a temp

file, 'distLN' is the object code of distLN.c; at the end means default stop; if

stop=82 then the program should run the 81st case since it skips 80 cases and

stop at 82

*/

n = atoi(argv[l]);

/* print the start time — wall clock */

now=time(NULL);

time_ptr=ctime(&now);

printff Distributed (LN):TIME Start for n=%d at %s\n",n, time_ptr);

system("rm -f dLNdata*");

skip = atoi(argv[3]);

stop = atoi(argv[4]);

Idskip = skip/30; /* Id and Jd each loops 6 times Kd 5 times */

Jdskip=(skip%30) / 5;

Kdskip= skip - (Idskip*30 + Jdskip*5);

Idstop = stop/30 + 1;

Jdstop= (stop%30) / 5 +1;

Kdstop= stop - ((Idstop-l)*30 + (Jdstop-l)*5) +1;

if(stop==0){Idstop=Jdstop=6; Kdstop=5;} /* default */

if(Idstop > 6 II (Jdstop > 6) II (Kdstop > 5))

{printf("stop error");

printf("Skips %d %d %d Stops %d %d %d\n", Idskipjdskip, Kdskip, Idstop,

Jdstop,Kdstop);

exit(l);}

34

fraw=fopen("DLNDATA","w");

fprintf(fraw,"\nldskip and Jdskip %d %d\n",Idskip, Jdskip);

fclose(fraw);

SIGNAL=0;
FFLAG=fopen("flag","w");

fprintf(FFLAG,"%d",SIGNAL);

fclose(FFLAG);

/* generate data: Id, Jd, Kd are loop indexes */

for(Id=l; Id<=6; Id++){

if(Id<6) Vc=0.1*Id*Uc;

if(Id== 6) Vc=0.01*Id*Uc;

for(Jd=l; Jd<=6; Jd++){

if(Jd<6) Vp=0.1*Jd*Up;

if(Jd==6) Vp=0.01*Jd*Up;

for(Kd=l;Kd<=5;Kd++){
B=0.1*(2*Kd-l)*n*Uc;

if(Id==Idstop && (Jd==Jdstop) && (Kd==Kdstop)) {

printf("\ndone\n");

now=time(NULL)

;

time_ptr=ctime(&now);

printffTIME ALL DONE for n=%d at %s\n",n, time_ptr);

exit(O); }

system("rm -f tmpSortedC ");

system("rm -f tmpSortedP ");

system("rm -f tmpSortedR");

counter++;

fraw=fopen("DLNDATA","a");

fprintf(fraw,"Vn Vc=%d Vp=%d B=%d >» CASE
%o*\n",Vc,Vp,B, counter);

35

printf("\n\n\n\n Vc=%d Vp=%d B=%d >» CASE %d\n'

Vc,Vp,B,counter);

now=time(NULL)

;

time_ptr=ctime(&now);

fprintf(fraw,"This case for n=%d begin at %s\n", n,time_ptr);

/* generate cost */

srandom(l);

for(i=l; i<=n; i++) Ul[i] = random()/MAXNUM;
/* generate profit (contribution) */

srandom(l);

for(i=l; i<=n; i++) U2[i] = random()/MAXNUM;
fin=fopen(argv [2]

,"w");

for(i=l; i<=n; i++){

t = sqrt(-2.0*log(Ul[i]));

theta = 6.28 *U2[i];

x= Vc* t* cos(theta) + Uc;

y= Vp* t* sin(theta) + Up;

fprintf(fin,"%d %d %d %cNT,i, (int)x, (int)y, (int)(1000*y/x));

/* print for reference */

fprintf(fraw,"%d %d %d %d\n",i, (int)x, (int)y, (int)(1000*y/x));

}

fclose(fin);

if((Id <=Idskip) II

((Id==(Idskip+l)) && (Jd <=Jdskip)) II

((Id==(Idskip+l)) && (Jd==Jdskip+l) && (K <=Kdskip)))

{

fprintf(fraw,"Id=%d Jd=%d Kd=%d\n", Id, Jd, Kd);

fclose(fraw);

continue;

/*done: above is generateData(argv[2]); */

now=time(NULL);

36

time_ptr=ctime(&now);

fprintf(fraw,"Distributed (LN):This case for n=%d begin at %s\n",n,time_ptr);

strcat(strcpy(command,"preprocess "),argv[2]);

system(command);

fin = fopen(argv[2], V); /* original data */

for(i=l ; i<= n; i++) {

fscanf(fin, "%d %d %d %d", &TABLE[i].index, &TABLE[i].cost,

&TABLE[i].profit, &TABLE[i].ratio);

}

fclose(fin);

for(I=l; I<=3; I++){ /*sorted data l/2/3=r/p/c */

fid = fopen(Filename[I], "r");

for(i=l ; i<= n; i++) {

fscanf(fid, "%d %d", &(Sort[I][i].value), &(Sort[I][i].index));

}

fclose(fid);

/* ==

Three one-way search algorithms FSc, FSp, and FSr are performed here

== */

for(I=l; I<=3; I++){

for(i=l; i<=n; i++) SolFSl[I][i]=0;

tmpCi= tmpPi = 0;

j=i;

for(i=l; i<=n; i++) {

if(tmpCi + TABLE[Sort[I][i].index].cost <= B) {

SolFSl[I][j++] = Sort[I][i].index;

tmpCi += TABLE[Sort[I][i].index].cost;

tmpPi += TABLE[Sort[I][i].index].profit;

}

FSl[I].CostUsed = tmpCi;

37

FS1 [I].Contribution = tmpPi;

Let's do two-way search algorithms for

FSrp, FSrc, FSpc, FSpr, FScr, FScp

ctr=0;

for(I=l; I<=3; I++){

for(J=l; J<=3; J++){

if(J !=I) {

ctr++;

for(i=0; i<=n; i++) {Vote[i]=0; SolFS2[ctr][i]=0;}

tmpCi= tmpPi =0;

for(i=l; i<=n; i++) {

Vote[Sort[I][i].index]++;

Vote[Sort[J][i].index]++;

if(Vote[Sort[I][i].index] == 2 II Vote[Sort[J][i].index] == 2){

if(Vote[Sort[I][i].index] == 2 &&
(tmpCi+TABLE[Sort[I][i].index] .cost<=B))

{

SolFS2[ctr][j++] = Sort[I][i].index;

tmpPi += TABLE[Sort[I][i].index],profit;

tmpCi += TABLE[Sort[I][i].index],cost;

}

else {

if(Vote[Sort[J][i].index] == 2 &&
(tmpCi+TABLE[Sort[J][i].index].cost<=B))

{

SolFS2[ctr][j++] = Sort[J][i].index;

tmpPi += TABLE[Sort[J][i].index].profit;

tmpCi += TABLE[Sort[J] [i].index], cost;

38

FS2[ctr].CostUsed = tmpCi;

FS2[ctr].Contribution = tmpPi;

} /* I,J,K */

/* ===

3-way search voting algorithms, 3x2x1 permutations!
=== */

ctr=0;

for(I=l; I<=3; I++) {

for(J=l; J<=3; J++) {

if(J !=I) {
/* do k */

for(K=l; K<=3; K++) {

if((K !=I) && (K!=J)) {

ctr++;

for(i=0; i<=n; i++) {Vote[i]=0; SolFS3[ctr][i]=0;}

tmpCi= tmpPi =0;

for(i=l; i<=n; i++) {

for(k=l; k<=3; k++) Vote[Sort[k][i].index]++;

if(Vote[Sort[l][i].index] = 2 II

Vote[Sort[2][i].index] == 2 II

Vote[Sort[3][i].index] == 2) {

if(Vote[Sort[I][i].index]==2 &&
(tmpCi+TABLE[Sort[I][i].index].cost<=B))

{

SolFS3[ctr][j++] = Sort[I][i].index;

tmpPi += TABLE[Sort[I][i].index].profit;

tmpCi += TABLE[Sort[I][i].index].cost;

39

else {

if(Vote[Sort[J][i].index]==2 &&
(tmpCi+TABLE[Sort[J][i].index].cost<=B))

{

SolFS3[ctr][j++] = Sort[J][i].index;

tmpPi += TABLE[Sort[J][i].index].profit;

tmpCi += TABLE[Sort[J][i].index].cost;

}

else {

if(Vote[Sort[K][i].index]==2 &&
(tmpCi+TABLE[Sort[K][i].index] .cost<=B))

{

SolFS3[ctr][j++] = Sort[K][i].index;

tmpPi += TABLE[Sort[K][i].index],profit;

tmpCi += TABLE[Sort[K][i].index],cost;

FS3[K].CostUsed = tmpCi;

FS3[K].Contribution = tmpPi;

/* real work loop */

Find the Best of the Linear Search

FS1[0].Contribution = FS2[0].Contribution = FS3[0] .Contribution =0;

for(I=l; I<=3; I++) {

if(FSl[I].Contribution > FS1[0].Contribution) FSl[0].id =1;

40

FSl[0].Contribution=max(FSl[0] .Contribution, FS1 [I].Contribution);

for(I=l; I<=6; I++) {

if(FS2[I].Contribution > FS2[0].Contribution) FS2[0].id =1;

FS2[0].Contribution=max(FS2[0] .Contribution, FS2[I].Contribution);

for(I=l; I<=6; I++)
{

if(FS3 [I].Contribution > FS3[0].Contribution) FS3[0].id =1;

FS3 [0] .Contribution=max(FS3 [0] .Contribution, FS3 [I] .Contribution);

}

i=l;

if(FSl[0].Contribution < FS2[0].Contribution) 1=2;

if((I==l) && (FS1[0].Contribution < FS3[0].Contribution)) 1=3;

if((I==2) && (FS2[0].Contribution < FS3[0].Contribution)) 1=3;

for(i=l;i<=n;i++) SolOpt[i]=0;

fprintf(fraw,"\n The Best of the Linear Search is:\n");

switch(I)

{

case 1 : /* the best is from 1 -way */

for(i=l; i<=n && SolFSl[FSl[0].id][i] !=0 ; i++)

{

fprintf(fraw,"%d ",SolFSl[FSl[0].id][i]);

SolOpt[i]=SolFS 1 [FS 1 [0] .id] [i]
;

}

fprintf(fraw,"\n");

fprintf(fraw,"CostUsed= %d Contribution= %d from

FS%s\n",FSl[FSl[0].id].CostUsed,

FS 1 [0] .Contribution, Fsstring 1 [FS 1 [0] .id]);

Plinear= FS1[0].Contribution;

break;

case 2:

for(i=l; i<=n && SolFS2[FS2[0].id][i] !=0 ; i++)

{

fprintf(fraw,"%d ",SolFS2[FS2[0].id][i]);

SolOpt[i]=SolFS2[FS2[0].id][i];

}

41

fprin tf(fraw ,"\n ")

;

fprintf(fraw,"CostUsed= %d Contribution^ %d from FS%sNn'

FS2[FS2[0].id].CostUsed,

FS2[0].Contribution, Fsstring2[FS2[0].id]);

Plinear= FS2[0].Contribution;

break;

case 3: /* from 3-way */

for(i=l; i<=n && SolFS3[FS3[0].id][i] !=0 ; i++)

{

fprintf(fraw,"%d",SolFS3[FS3[0].id][i]);

SolOpt[i] = SolFS3[FS3[0].id][i];}

fprintf(fraw,"\n");

fprintf(fraw,"CostUsed= %d Contribution= %d from

FS%sW',FS3[FS3[0].id].CostUsed,

FS3 [0] .Contribution, Fsstring3 [FS3 [0] .id]);

Plinear= FS3[0].Contribution;

break;

default: fprintf(fraw,"impossible!\n");

break;

}

Find the union of candidates

for(i=l; i<=n; i++) Candidate [i]=0;

for(I=l;I<=3; I++) {

for(i=l; i<=n; i++) {

if(SolFSl[I][i] !=0 && Candidate[SolFSl[I][i]] ==0)

Candidate[SolFSl[I][i]] =1;

if(SolFSl[I][i] ==0) break;}

for(I=l; I<=6; I++) {

for(i=l; i<=n; i++) {

if(SolFS2[I][i] !=0 && Candidate[SolFS2[I][i]] ==0)

Candidate[SolFS2[I][i]] =1;

42

if(SolFS2[I][i] ==0) break;;

for(I=l; I<=6; I++) {

for(i=l; i<=n; i++) {

if(SolFS3[I][i] !=0 && Candidate[SolFS3[I][i]] ==0)

Candidate[SolFS3[I][i]] =1;

if(SolFS3[I][i] ==0) break;}

f* ===== _. _==-^ ===
Union of all linear candidates

LN=1;
fsamp=fopen("sample 1 ","w");

for(i=l;i<=n;i++) if(Candidate[i]==l) {

fprintf(fsamp,"%d %d\n ",LN,i);

sample[LN++]=i;

}

LN-;
fclose(fsamp);

/* verified above this line */

;* ================================z

/* start the phase 2 computation */

phase2();

now=time(NULL);

time_ptr=ctime(&now);

printf("\n\nLinear Done for n=%d at %s",n, time_ptr);

fprintf(fraw,"\nDistributed (LN) :Linear Done for n=%d at %s\n",n, time_ptr);

fclose(fraw);

for(i=l; i<=2; i++) {

FFLAG=fopen("flag",V);

fscanf(FFLAG,"%d",&SIGNAL);

fclose(FFLAG);

43

if(SIGNAL ==) break;

i-; 1

/* Id, Jd, Kd */

}
/* end of main */

/* * *

* * *

phase2()

{

int Ntmp,Nmin,Nmax,NminPrime,NmaxPrime;

int sumPi,sumCi,i,j,k,jlj2,s,a;

FILE*fjobl;

char commandl[100],tail2[100];

Cmin = Sort[3][l].value;

Cmax = Sort[3][n].value;

Nmin = B/Cmax;

Nmax = B/Cmin;

printf("\nBefore: Nmin=%d , Nmax=%d , n=%d
\n",Nmin,Nmax,n);

fprintf(fraw,''\Nbefore: n=%d ,Nmin=%d
,

Nmax=%d\n",n,Nmin,Nmax);

sumPi=0;

for(i=l; i<=Nmax; i++)
{

if(sumPi+Sort[2]fi].value <= Plinear)
{

sumPi = sumPi + Sort[2][i].value;

44

else break;}

NminPrime = i; /* for i-1 best choices of Pi cannot beat Plinear then we are

sure the minimum number of links is i */

if(NminPrime > Nmin) Nmin = NminPrime;

/* == */

sumCi=0; /* for i best choices of Ci cannot exceed the B and the UL cannot

be more than number of links which consists of these Ci */

for(i=l; i<=Nmax; i++) {

if(sumCi+Sort[3][i]. value <= B) {

sumCi = sumCi + Sort[3][i].value;

}

else break; }

NmaxPrime = i -1;

if(NmaxPrime < Nmax) Nmax = NmaxPrime;

Nmin=min(Nmin,Nmax);

Nmax=max(Nmin,Nmax);
printf("After: Nmin=%d , Nmax=%d , LN=%d \n", Nmin, Nmax, LN);

fprintf(fraw,"After:Nmin=%d Nmax=%d LN=%d
Plinear=%d\n",Nmin,Nmax,LN,Plinear);

currentPi=Plinear;

for(i=l; i<=n; i++) {SolCurrent[i]=0;}

if (LN%2 ==) {
/* workload analysis */

order[0]= LN/2; /* the largest one */

jl=j2=l;

for(j=l;j<LN-l; j++) {

if ((j+2)%2 !=0) {

order[j]=(LN/2)-jl
;

ii++; }

if ((j+2)%2 ==0
) {

order[j]=(LN/2)+j2;

J2++; }

}

45

order[LN-l]=LN; }

if (LN%2 !=) {

order[0]=LN/2;

order[l]=(LN/2)+l;

jl=j2=l;

for(j=2;j<LN-l;j++){

if (j%2 ==0)

{ order[j]=order[0]-j 1 ;j 1 ++;

if Q%2 !=0)

{ order[j]=order[l]+j2;j2++;

}

order[LN-l]=LN;

printf("^iWe have %d job(s) to do: ",Nmax-Nmin+l);

k=l;

fjobl=fopen("joblistl","w");

for(s=0; s<=LN-l; s++) {

if ((order[s]-Nmin)*(order[s]-Nmax) <=) {

job[k]=order[s];

fprintf(fjobl,"%d %d\n",kjob[k]);

k++; }

if (k>(Nmax-Nmin+l)) break; }

fclose(fjobl);

for(k=l; k<=Nmax-Nmin+l; k++)

printf("C(%d %d) ",LN,job[k])
;

fpara=fopen("parameter","w");

fprintf(fpara,"\n%d %d %d %d %d %d %d %d %d,

Vc,Vp,B,n,Nmax,Nmin,Plinear,LN, counter);

fclose(fpara);

if((Nmax-Nmin) >)

{

SIGNAL++;
FFLAG=fopen("flag","w");

46

fprintf(FFLAG,"%d",SIGNAL);

fclose(FFLAG);

system("cp sample 1 sample2");

system("cp joblistl joblist2");

system("cp try originate");

system("rsh sun 10 time share 2 » dLNdata2 &");

now=time(NULL);

time_ptr=ctime(&now);

fprintf(fraw,")-> Send job(s) to sun 10 at %s\n", time_ptr);

if((Nmax-Nmin) > 1)

{

SIGNAL++;
FFLAG=fopen("flag","w");

fprintf(FFLAG;"%d",SIGNAL);

fclose(FFLAG);

system("cp samplel sample3");

system("cp joblistl joblist3");

system("cp try originaB");

system("rsh sun2 time share 3 » dLNdata3 &");

now=time(NULL);

time_ptr=ctime(&now);

fprintf(fraw,")-> Send job(s) to sun2 at %s\n", time_ptr);

if((Nmax-Nmin) > 2)

{

SIGNAL++;
FFLAG=fopen("flag","w");

fprintf(FFLAG,"%d",SIGNAL);

fclose(FFLAG);

system("cp samplel sample4");

system("cp joblistl joblist4");

system("cp try original4");

47

system("rsh sun 17 time share 4 » dLNdata4 &");

now=time(NULL);

time_ptr=ctime(&now);

fprintf(fraw,")-> Send job(s) to sunl7 at %s\n", time_ptr);

for (a=l; a<= 1000; a++) { /* the lst(host) process */

comb(LN,job[j],l);

if ((a+2)%2 !=)

J=J+7;

else j=j+l;

if (j > (Nmax-Nmin+1))

break; /* job[l] [8] [9] [16] [17] ... for sunll */

fprintf(fraw,"B=%d SolOpt=\n",B);

for(i=l; i<=n && SolOpt[i] !=0 ; i++) {fprintf(fraw,"%d ",SolOpt[i]);}

fprintf(fraw,"\n\nLN=%d Nmin=%d Nmax=%d\n", LN, Nmin, Nmax);

if(currentPi > Plinear) {

fprintf(fraw,"Linear(Better) Optimum Contribution: %d\n", currentPi);

printf("\Nlinear(Better) Optimum Contribution: %d\n", currentPi);

Plinear=currentPi;

}

else { fprintf(fraw,"Linear(same) Optimum Contribution:

%d\n",currentPi);

printf(
,

^Nlinea^(same) Optimum Contribution:

%d\n",currentPi);

return;

/* * *

* * *

* * */

48

comb(N,K,ptr)

int N,K,ptr;

{

int i, jj, k, local, tmpCi;

local=ptr; /* local is the index of current candidate */

if (K > N) {
printf("error in comb 1 ");return;}

if (K==N) {

for(i=l; i<=N; i++) out[local++]=i;

tmpPi= tmpCi= 0;

for(k=l; k<local; k++) {

tmpPi += TABLE[sample[out[k]]].profit;

tmpCi += TABLE[sample[out[k]]].cost;

SolCurrent[k]=sample[out[k]];

}

if((tmpPi > currentPi) && (tmpCi <=B)) {

printf("update"); update(); }

return;

}

if(K==l) {

for(i=l; i<=N; i++) {

out[local] = i;

tmpPi= tmpCi= 0;

for(k=l; k<=local; k++) {

tmpPi += TABLE[sample[out[k]]].profit;

tmpCi += TABLE[sample[out[k]]].cost;

SolCurrent[k]=sample[out[k]];

}

if((tmpPi > currentPi) && (tmpCi <=B)) {

update();

}

}

return;

49

for(jj=l; jj<=2;jj++){

if(jj==l) {out[local]=N;

comb(N-l,K-l,++local);

}

if(jj==2) { local=ptr; comb(N-l, K, local);

return;

}

update()

{

int i;

for (i=l; i<=n; i++)

{SolOpt[i] = SolCurrent[i];}

currentPi=tmpPi;

}

50

APPENDIX B PROGRAM OF THE REMOTE PROCESS

Program of the Remote process

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <signal.h>

#define MAXtry 101

long now;

char *time_ptr;

long int Plinear,currentPi;

int n,LN,Nmax,Nmin,B,process,counter,SIGNAL;

intout[MAXtry],SolCurrent[MAXtry],SolOpt[MAXtry];

int tmpCi,tmpPi;

struct Original {

int index;

int cost;

int profit;

int ratio;

} TABLE[MAXtry];

struct RCS2 {

int new; /* sample[new order of the RCS set] */

int old; /* = old order of the original set. */

} sample2[MAXtry];

struct RCS3 {

int new;

int old;

} sample3 [MAXtry];

struct RCS4 {

int new;

51

int old;

} sample4[MAXtry];

struct JOB2 { /*job[after rearrangement based on[Nmax-Nmin+1] = order

based on n before rearrangement */

int after;

int before;

}
job2[MAXtry];

struct JOB3 {

int after;

int before;

} job3[MAXtry];

struct JOB4 {

int after;

int before;

} job4[MAXtry];

main(argc, argv)

int argc;

char **argv;

{

int a,i,j,k,Vc,Vp;

FILE *fin2,*fin3,*fin4,*fsamp2,*fsamp3,*fsamp4,*fjob2,

*fjob3,*fjob4,*fpara,*FFLAG;

now=time(NULL);

time_ptr=ctime(&now);

printf("\n\n»»» Distributed (LN) : Time start for this case at %s",time_ptr);

process= atoi(argv[l]);

printfC* Process=%d\n",process);

fpara=fopen("parameter","r");

fscanf(fpara,"%d %d %d %d %d %d %d %d %d ",

&Vc,&Vp,&B,&n,&Nmax,&Nmin,&Plinear,&LN,&counter);

printf(" < CASE %d >\n, counter);

printf("\nVc=%d Vp=%d B=%d \nn=%d Nmin=%d Nmax=%d
Plinear=%d LN=%d\n ",Vc,Vp,B, n,Nmin, Nmax, Plinear,LN);

52

fclose(fpara);

for(i=l; i<=n; i++) SolCurrent[i]=0;

currentPi=Plinear;

/* ===============

The 2nd process

=============== */

if (process == 2) {

rin2=fopen("original2","r");

for(i=l; i<=n; i++)

{fscanf(fin2, "%d %d %d %d", &TABLE[i].index, &TABLE[i].cost,

&TABLE[i].profit, &TABLE[i].ratio);

}

fclose(fin2);

fsamp2=fopen("sample2","r");

for(i=l; i<=LN;i++)

{fscanf(fsamp2, "%d %d", &sample2[i].new, &sample2[i].old);}

fclose(fsamp2);

printf("\nThe index of RCS members are :\n ");

for(i=l; i<=LN; i++)

{printf("%d ",sample2[i].old);}

fjob2=fopen("joblist2","r");

for(i=l; i<=Nmax-Nmin+l; i++)

{fscanf(fjob2, "%d %d", &job2[i]. after, &job2[i].before);}

fclose(fjob2);

printf("\n\nThis case has %d combinations :\n ",Nmax-Nmin+l);

for(i=l; i<=Nmax-Nmin+l; i++)

{printf("(%d %d) ",LN,job2[i].before);}

printf('VFor this process: ");

j=2; /* Host is the 1 st process */

for (a=l; a<= 100; a++) {

if (j <= (Nmax-Nmin+1))
{

53

printf("JOB=(%d %d) ",LN,job2[j].before);

if(LN>=job2[j].before)

comb(LN,job2[j] .before, 1);

if ((a+2)%2 !=)

H+5;
else j=j+3; }

else break; }

/* ============

The 3rd process

if (process == 3) {

fin3=fopen("original3","r");

for(i=l; i<=n; i++)

{fscanf(fin3,"%d %d %d %d", &TABLE[i].index,

&TABLE[i].cost,&TABLE[i].profit, &TABLE[i].ratio);

}

fclose(fin3);

fsamp3=fopen("sample3",V);

for(i=l; i<=LN; i++)

{fscanf(fsamp3,"%d %d", &sample3[i].new, &sample3[i].old);

fclose(fsamp3);

fjob3=fopen("joblist3","r");

for(i=l; i<=Nmax-Nmin+l; i++)

{fscanf(fjob3,"%d %d", &job3[i]. after, &job3[i].before);}

fclose(fjob3);

printf('\Nfor this process: ");

j=3;

for(a=l; a<= 100; a++) {

if(LN >=job3[j].before)
{

printf("JOB=(%d %d)
n
,LN,job3[j].before);

comb(LN,job3[j].before,l);}

54

if ((a+2)%2 !=)

J=J+3;

else j=j+5;

if (j > (Nmax-Nmin+1))

break:

The 4th process

=============== */

if (process == 4) {

fin4=fopen("original4","r");

for(i=l; i<=n; i++)

{fscanf(fin4,"%d %d %d %d\ &TABLE[i].index,&ABLE[i].cost,

&TABLE[i] .profit, &TABLE[i].ratio);

}

fclose(fin4);

fsamp4=fopen("sample4","r");

for(i=l; i<=LN; i++)

{fscanf(fsamp4,"%d %d", &sample4[i].new, &sample4[i].old);}

fclose(fsamp4);

fjob4=fopen("joblist4","r");

for(i=l; i<=Nmax-Nmin+l; i++)

{fscanf(fjob4,"%d %d", &job4[i]. after, & job4[i].before); }

fclose(fjob4);

printf('\Nfor this process: ");

j=4;

for(a=l; a<= 100; a++) {

if(LN>=job4[j].before)
{

printf("JOB=(%d %d) ",LN,job4[j].before);

comb(LN,job4[j].before,l);}

if ((a+2)%2 !=)

H+i;
else j=j+7;

55

if (j > (Nmax-Nmin+1))

break;

/* */

printf("\n\nSolOpt= ");

for(i=l; i<=n && SolOpt[i] !=0 ; i++) {
printf("%d ", SolOpt[i]);

printf(" Nn\n");

if(currentPi > Plinear)

printf("Distributed (LN) :

Better Optimum Contribution :%d\n\n",currentPi);

else printf("Distributed (LN) :

==Same== Optimum Contribution: %d\n\n",currentPi);

now=time(NULL);

time_ptr=ctime(&now);

printf("»»»»»»»»»»»»»»»»
Assigned job done at %s V»\n",time_ptr);

FFLAG=fopen("flag",V);

fscanf(FFLAG,"%d",&SIGNAL);

fclose(FFLAG);

FFLAG=fopen("flag","w");

SIGNAL-;
fprintf(FFLAG,"%d",SIGNAL);

fclose(FFLAG);

} /* end of main */

56

/* * *

* * *

* * */

comb(N,K,ptr)

int N,K,ptr;

{

int i, jj, k, local, tmpCi;

local=ptr; /* local is the index of current candidate */

if (K > N)
{
printf("error in comb 1 ");return;

}

if (K==N) {

for(i=l; i<=N; i++) out[local++]=i;

tmpPi= tmpCi= 0;

if (process == 2){

for(k=l; k<local; k++){

tmpPi += TABLE[sample2[out[k]].old].profit;

tmpCi += TABLE[sample2[out[k]]. old].cost;

SolCurrent[k]=sample2[out[k]].old;

if (process == 3) {

for(k=l; k<local; k++){

tmpPi += TABLE[sample3[out[k]]. old],profit;

tmpCi += TABLE[sample3[out[k]].old].cost;

SolCurrent[k]=sample3[out[k]].old;

if (process == 4){

for(k=l; k<local; k++){

tmpPi += TABLE[sample4[out[k]].old].profit;

tmpCi += TABLE[sample4[out[k]]. old].cost;

SolCurrent[k]=sample4[out[k]].old;

}

if(tmpPi > currentPi && tmpCi <=B)
printf("update"); update(); }

return;

57

if(K==l) {

for(i=l; i<=N; i++) {

out[local] = i;

tmpPi= tmpCi= 0;

if (process == 2){

for(k=l; k<=local; k++) {

tmpPi += TABLE[sample2[out[k]]. old] .profit;

tmpCi += TABLE[sample2[out[k]]. old].cost;

SolCurrent[k]=sample2[out[k]].old;

if (process == 3) {

for(k=l; k<=local; k++) {

tmpPi += TABLE[sample3[out[k]].old] .profit;

tmpCi += TABLE[sample3[out[k]]. old].cost;

SolCurrent[k]=sarnple3[out[k]].old;

}

}

if (process == 4){

for(k=l; k<=local; k++)
{

tmpPi += TABLE[sample4[out[k]].old].profit;

tmpCi += TABLE[sample4[out[k]]. old].cost;

SolCurrent[k]=sample4[out[k]].old;

if((tmpPi > currentPi) && (tmpCi <=B))

update();

}

return;

for(jj=l; jj<=2;jj++){

if(jj==l) {out[local]=N;

comb(N-l, K-l, ++local);

}

if(jj==2) {local=ptr; comb(N-l, K, local);

58

return;

}

update()

{

int i;

for (i=l; i<=n; i++)

{SolOpt[i] = SolCurrentfi];

currentPi=tmpPi;

59

LIST OF REFERENCES

1. Newport, K.T., and Varshney, P.K., 'On the Design of Performance

Constrained Survivable Networks,' Conference Record, 1989 IEEE Military

Communications Conference, p.663-670.

2. Schroeder, M.A., and Newport, K.T., 'Enhanced Network Survivability

Through Balanced Resource Criticality,' Conference Record, 1989 IEEE
Military Communications Conference, pp.682-687.

3. Wu, Lin and Varshney, P.K., 'On Survivability Measures for Military

Networks,' Conference Record, 1990 IEEE Military Communications

Conference, pp. 1120-1124.

4. Rizik, P.D., 'A Model for Survivable, Low Cost Access Area Network Design

in a New Europe,' Conference Record, 1990 IEEE Military Communications

Conference, pp. 1097-1102.

5. Newport, K.T., Schroeder, M.A., and Wittaker, G.M., Techniques for

Evaluating the Nodal Survivability of Large Networks,' Conference Record, 1990

IEEE Military Communications Conference, pp. 1108-1113.

6. Wittaker, G.M., Schroeder, M.A., and Newport, K.T., 'A Knowledge-Based

Approach to the Computation of Network Nodal Survivability,' Conference

Record, 1990 IEEE Military Communications Conference, pp. 1114-1119.

7. Yang, C, and Kung, C, 'Networking Link Enhancement with Minimum
Costs,' Conference Record, 1990 IEEE Military Communications Conference,

pp.1 125-1 128.

8. Tirumalai, P., and ButlerJ.T., 'Minimization Algorithms for Multiple Valued

Programmable Logic Arrays,' IEEE Transaction on Computers, Vol.C-40,No.2,

February 1991, pp. 167-177.

9. Yang, C, 'Link Enhancement Using Constrained Range and Reduced

Candidate Set Searches,' Journal of Computer Communications, Butterworth

Heinemann, to appear, Nov., 1992.

60

10. Coulouris, George F., and Dollimore, Jean, 'Distributed Systems',Addison-

Wesley Co.,Inc. 1991.

11. Devore, Jay L., 'Probability and Statistics for Engineering and the Sciences,'

Brooks/Cole Publishing Co., 1991.

12. Stevens, W.Richard, 'UNIX Network Programming,' Prentice-Hall, Inc., 1990.

13. Swartz, Ray, 'UNIX Applications Programming:Mastering the Shell,' SAMS,
1990.

14. Yang, C, and Misirlioglu, L., 'A Comparative Study of Network Link

Enhancement Algorithms,' IEEE Milcom '92 to appear October 1992.

61

INITIAL DISTRIBUTION LIST

1

.

Defense Technical Information Center

Cameron Station

Alexandria, Virginia 22304-6145

2. Library, Code 52

Naval Postgraduate School

Monterey, California 93943-5000

3. Professor Jeffrey Knorr, Chairman, Code EC/KO
Electronic Warfare Academic Group

Naval Postgraduate School

Monterey, California 93943-5000

4. Professor Yang, Chyan

Institute of Management Science

National Chiao Tung University

#114 (4F), Chung Shiao West Road, Section 1

Taipei City, Taiwan R.O.C.

5. Professor David A. Schrady, Code OR/SO
Department of Operation Research

Naval Postgraduate School

Monterey, California 93943-5000

6. Library

Chung Cheng Institute of Technology

Tashi, Taoyuan County

Taiwan R.O.C.

7. Wu, Tsung-li

6-3 Lane 42, San-min Road, Section 1

Taoyuan City, Taiwan R.O.C.

s^-SH 1-
62

n Thesis
1W9313 Wu
c.l Distributed processing

on link enhancement.

Thesis
W9313 Wu
c.l Distributed processing

on link enhancement.

W

